71 research outputs found

    Evaporation and carbonic anhydrase activity recorded in oxygen isotope signatures of net CO2 fluxes from a Mediterranean soil

    Get PDF
    The oxygen stable isotope composition (d18O) of CO2 is a valuable tool for studying the gas exchange between terrestrial ecosystems and the atmosphere. In the soil, it records the isotopic signal of water pools subjected to precipitation and evaporation events. The d18O of the surface soil net CO2 flux is dominated by the physical processes of diffusion of CO2 into and out of the soil and the chemical reactions during CO2–H2O equilibration. Catalytic reactions by the enzyme carbonic anhydrase, reducing CO2 hydration times, have been proposed recently to explain field observations of the d18O signatures of net soil CO2 fluxes. How important these catalytic reactions are for accurately predicting large-scale biosphere fluxes and partitioning net ecosystem fluxes is currently uncertain because of the lack of field data. In this study, we determined the d18O signatures of net soil CO2 fluxes from soil chamber measurements in a Mediterranean forest. Over the 3 days of measurements, the observed d18O signatures of net soil CO2 fluxes became progressively enriched with a well-characterized diurnal cycle. Model simulations indicated that the d18O signatures recorded the interplay of two effects: (1) progressive enrichment of water in the upper soil by evaporation, and (2) catalytic acceleration of the isotopic exchange between CO2 and soil water, amplifying the contributions of ‘atmospheric invasion’ to net signatures. We conclude that there is a need for better understanding of the role of enzymatic reactions, and hence soil biology, in determining the contributions of soil fluxes to oxygen isotope signals in atmospheric CO2

    Investigating Forest Photosynthetic Response to Elevated CO2 Using UAV-Based Measurements of Solar Induced Fluorescence

    Get PDF
    The response of ecosystems to increasing atmospheric CO2 will have significant, but still uncertain, impacts on the global carbon and water cycles. A lot of infounation has been gained from Free Air CO2 Enrichment (FACE) experiments, but the response of mature forest ecosystems remains a significant knowledge gap. One of the challenges in FACE studies is obtaining an integrated measure of canopy photosynthesis at the scale of the treatment ring. A new remote sensing approach for measuring photosynthetic activity is based on Solar Induced Fluorescence (SIF), which is emitted by plants during photosynthesis, and is closely linked to the rates and regulation of photosynthesis. We proposed that UAV-based SIF measurements, that enable the spectrometer field of view to be targeted to the treatment ring, provide a unique opportunity for investigating the dynamics of photosynthetic responses to elevated CO2. We have successfully tested this approach in a new FACE site, located in a mature oak forest in the UK. We flew a series of flights across the experiment arrays, collecting a number of spectra. We combined these with ground-based physiological and optical measurements, and see great promise in the use of UAV-based SIF measurements in FACE and other global change experiments.Peer reviewe

    Climate suitability predictions for the cultivation of macadamia (<i>Macadamia integrifolia</i>) in Malawi using climate change scenarios

    Get PDF
    Climate change is altering suitable areas of crop species worldwide, with cascading effects on people reliant upon those crop species as food sources and for income generation. Macadamia is one of Malawi’s most important and profitable crop species; however, climate change threatens its production. Thus, this study’s objective is to quantitatively examine the potential impacts of climate change on the climate suitability for macadamia in Malawi. We utilized an ensemble model approach to predict the current and future (2050s) suitability of macadamia under two Representative Concentration Pathways (RCPs). We achieved a good model fit in determining suitability classes for macadamia (AUC = 0.9). The climatic variables that strongly influence macadamia’s climatic suitability in Malawi are suggested to be the precipitation of the driest month (29.1%) and isothermality (17.3%). Under current climatic conditions, 57% (53,925 km2) of Malawi is climatically suitable for macadamia. Future projections suggest that climate change will decrease the suitable areas for macadamia by 18% (17,015 km2) and 21.6% (20,414 km2) based on RCP 4.5 and RCP 8.5, respectively, with the distribution of suitability shifting northwards in the 2050s. The southern and central regions of the country will suffer the greatest losses (≥ 8%), while the northern region will be the least impacted (4%). We conclude that our study provides critical evidence that climate change will reduce the suitable areas for macadamia production in Malawi, depending on climate drivers. Therefore area-specific adaptation strategies are required to build resilience among producers

    Influences of light and humidity on carbonyl sulfide-based estimates of photosynthesis

    Get PDF
    Understanding climate controls on gross primary productivity (GPP) is crucial for accurate projections of the future land carbon cycle. Major uncertainties exist due to the challenge in separating GPP and respiration from observations of the carbon dioxide (CO2) flux. Carbonyl sulfide (COS) has a dominant vegetative sink, and plant COS uptake is used to infer GPP through the leaf relative uptake (LRU) ratio of COS to CO2 fluxes. However, little is known about variations of LRU under changing environmental conditions and in different phenological stages. We present COS and CO2 fluxes and LRU of Scots pine branches measured in a boreal forest in Finland during the spring recovery and summer. We find that the diurnal dynamics of COS uptake is mainly controlled by stomatal conductance, but the leaf internal conductance could significantly limit the COS uptake during the daytime and early in the season. LRU varies with light due to the differential light responses of COS and CO2 uptake, and with vapor pressure deficit (VPD) in the peak growing season, indicating a humidity-induced stomatal control. Our COS-based GPP estimates show that it is essential to incorporate the variability of LRU with environmental variables for accurate estimation of GPP on ecosystem, regional, and global scales.Peer reviewe
    • …
    corecore